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Ahtract. Topological models of 20 cellular stmctures are associated with distributions of 
spins given by a ferromagnetic Ising model with nearest-neighbour interactions on a square 
lattice. Every verlex of a square lattice is topologically unstable as it belongs to more than 
three polygons. There are two ways, associated with the spin states, to remove this 
degeneracy by replacing every vertex by one side. Topological properties such as the 
distribution P ( n )  of the number n of cell sides, the two-cell correlation M,(n)= P ( k ) A , ,  
which is the average number of k-sided neighbours o f a  cell with n sides ("-cell), the mean 
number m ( n )  of sides of the first neighbour cells of n-cells are characterized as a function 
o f  Tl 7, by direct calculations and by Monte Carla and Q2R simulations. The correlations 
A,. of a biological tissue are compared with the A,. of a ferromagnetic king cellular 
structure and with the A,. expected from the maximum-entropy model. 

1. Introduction 

In two previous papers (Le Caer 1991a, b, referred to hereafter as I and II ) ,  a method 
for constructing topological models of space-filling random cellular structures has been 
described and has been applied to two-dimensional structures. The models yield the 
relative repartition of cells and do not need or provide information about angles and 
cell-edge lengths. 

Let us consider a lattice in which every site is characterized by its valence z (>zs = 3  
in ZD) which is the number of edges merging in that vertex. Every vertex, which belongs 

deformations. The construction method is based on rules which allow removal of this 
instability. The stable configuration is obtained by adding z - 3 sides at every vertex 
(figure 1, Thompson 1917). Every added side is connected at least to one added side 
for z > 4 (I and 11). The latter rule produces a set of Q(z)  possible stable configurations, 
called states, which have been enumerated as a function of z in 11. The last ingredient 
of the method is a criterion for distributing the various states on the lattice sites. In 
the previous work ( I  and 11), distributions of independent states were only considered 
for z ranging from 4 to infinity. An equivalent method of construction of the cellular 
structure uses the Euler diagonal triangulation of the dual lattice (Le Caer 1991b). For 
a square lattice SL, it consists of triangulating ( T )  every square by choosing one of 
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6194 R Delannay er a1 

the two possible diagonals. SL is thus transformed into TSL whose dual is the associated 
cellular structure. 

The present paper will focus on interacting states on the square lattice z = 4  (or on 
any lattice topologically equivalent to it). For that lattice, Q(4) = 2 and a 'spin' S = *$ 
can be introduced (I, figure 1) .  The spin allows description of the type of stable 
configuration which is chosen from the two possible at every lattice site. It further 
allows calculation of the topological characteristics of the cellular structure associated 
.rr:thrl..l-..n-~'l-rh~-,Intt:-~ TLalmttn- . . l -  "-"- .--:-.:--:--3..J an...%. >:.A.:L..A:. ~ 
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P ( n )  of the number n of edges of cells (called here n-cells) and the n-dependence of 
the mean number m ( n )  of sides of the first neighbour cells of n-cells. Very recently, 
Peshkin et al (1991) have drawn attention to a two-cell correlation: M k ( n )  which is 
the average number of k-sided neighbours of an n-cell. 

M k ( n )  and m ( n )  are related by (Peshkin et a1 1991): 

n m ( n ) = x  k M k ( n ) .  ( 1 )  
k 

A semi-empirical law, the Aboav-Weaire law (Aboav 1970, 1980, Weaire 1974), 
expresses that m ( n )  is linearly related to l / n  by 

m (  n )  = 6 -  a +(6a +,u2)ln (2) 

where fi2 is the variance of the distribution of n: ~ ~ ~ = ( n * ) - ( n ) ~ ,  with ( n ) = 6  as a 
consequence of the Euler relation in 2~ (Weaire and Rivier 1984) and (nm(  n ) )  = p2+ 36 
(Weaire 1974). In many natural random cellular structures, the parameter a is of the 
order of 1.2 (Aboav 1980). Equation (2) has been derived by Peshkin er a1 (1991) from 
the application of the maximum entropy principle with constraints imposed on the 
P ( n ) :  M k ( n )  are predicted tobelinearin n inordertoreducethenumberofindependent 
constraints. The deviations from the Aboav-Weaire law (for n = 3  and n a 9 )  have 
been previously discussed for the topological models mainly associated with a distribu- 
tion of independent and equiprobable states (I, 11). 

The purpose of the present work is to investigate the consequences of interactions 
on the topological properties of cellular structures associated with a distribution of 

models. At T = 0, many of these models give rise to ordered magnetic structures which 
yield ordered cellular structures with only six-sided cells. This is, for instance, true for 
structures built from alternating strips of + and - spins with boundaries parallel to 
one of the square side, whatever the distribution of the strip widths. As the same 
cellular structure is also associated with all these models at infinite temperature, we 
have chosen to investigate first the best known model, that is the ferromagnetic Ising 
model with nearest-neighbour couplings, as a function of the reduced temperature 
T /  T, (the associated cellular structures are called in short ferromagnetic king cellular 
structures). king spin glasses are also worth studying but they raise more complex 
simulation problems. The P ( n )  distributions, which were derived in paper I for the 
ferromagnetic Ising model, are calculated. Moreover, Monte Carlo and Q2R cellular 
automata (Vichniac 1984, Stauffer 1991) simulations are performed in order to provide 
information about M , ( n )  and m ( n ) .  The results are compared to those calculated for 
a random distribution of states as well as to experimental and to simulated results 
reported for various cellular structures with similar characteristics: p2G 1, P ( n )  negli- 
gible for n = 3 and n 

on a jquaie ;ai~ce,  n,e siiiip;esi i-ilode;s of iiiieraciiiig spins Bfe I j y  isiiig 
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2. Previous results for the square lattice 

Labelling as 1 the upper right corner of the central square in figure 1 and as 2 the 
upper left comer etc, the number of sides n (4s  n < 8) is given by (S j  = &, I ) :  

4 

j = 1  
n = 6 +  C (-1)'+'S. I'  (3) 

If we consider any square of the starting lattice, its corresponding cell (n-cell) in the 
topological model will have two types of neighbours (figure 1): 

4 unconditional neighbours which are associated with the four neighbouring 
squares which share one side with the considered square. 

n -4  conditional neighbours which are associated with n - 4  squares which share 
one vertex with the considered square. It is the spin value which determines which 
sqi;a:es have to be chose:: a-o-p :he Fon: p=ssib!e ones. The fc!!owing :e!a!ion hzs 
also been derived in I: 

where the random variable nm(n,  1) is the total number of sides of the first-neighbour 

Both MT are given by an algebraic sum of three spins at every corner of the outer 
square (figure 1) which includes the nine interior squares. The relative position of Sj 
and M, is also shown in figure 1. MT is the sum of the corner spin plus or minus the 
sum of its two neighbour spins, one per side of the outer square. The last sum in 
equation (4) is due to conditional neighbours which are responsible for the presence 

For independent states or for the king model, all sites are equivalent. The resulting 
distribution P ( n )  cannot therefore depend on the arbitrariness of the choice of the 
spin labelling in equation (3) and must be invariant when all spins S, are changed to 
-3. All odd-moments p2k+1 = ( ( n  -6)'*+') are zero and P ( n )  is symmetric with respect 
to n = 6. This result is not general as spin repartitions, which give rise to asymmetrical 

ce!!s af a E-ce!!. The are:zge over a!! ccnEg-rz!ion: of spins, Fcr B Gxcd ", is C % ( r ! ) .  

of pair correlations in that term, 

+= + -+ - 

m + .  + +  / % I  
+ -s + + M 

Figure 1. Left part: the two possible stable configurations (states) obtained by adding a 
side at a vertex of a square lattice (+=), -=-4). Right part: an example of a distribution 
of states on a square lattice, the corresponding values of the number n of cell sides and 
one realization afthe associated cellular structure (circled numbers: labelling for equations 
(3)  to ( 5 ) ) .  
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P ( n )  distributions, can be easily constructed on a square lattice. Using equation (3) 
and averaging over all possible configurations of spins allow calculation of p2 and pa. 
As the even moments only depend on four spins located on the vertices of a square, 
they can be expressed as a function of the two pair-correlation coefficients and the 
quartet correlation coefficient which can be defined on that square: 

XI =4(S,S*) x2=4(S,SJ Xl2= 16(S,S2S3S,). ( 5 )  
As there are only two independent parameters, the pair correlation terms appear only 
through the combination: 

d I 2 = 2 x l - x 2 .  (6) 
We calculate (I) 

p2= 1 - 4 2  p4 = $ + 3 ~ , ~ / 2 - 4 d , ~  (7) 
and we deduce 

P(4) P(8) = ( / A -  p2)/24= ( 1  +X,,)/16- d12/8 

P(5)=P(7)  = ( 4 ~ ~ ~ 2 - 1 ~ 3 / 6 = ( 1 - ~ , 2 ) / 4  (8) 
P ( 6 ) = 1 - ( 5 p L , - p , ) / 4 = 3 ( 1 + ~ , , ) / 8 + d , ~ / 4 .  

When the spins are independently distributed on every site with a probability p for 
S = $, the correlation coefficients are given by: 

x, = x2 = d,, = (2(Sk))' = (2p - 1)2 = M 2  (9) 

x,2= (2(sk)14= ~4 P L ~ = ~ P ( ~ - P )  (10) 

where M is the magnetization. For a distribution of independent states, the average 
of nm(n, l) ,  for a fixed n, yields (Le Caer 1991a): 

m(n)=p+4+(13-6p) /n+( l -2p)Ac(n) /n  (11)  

where Ac(n) is given by: 

Ac(4)=-1  Ac(8)=1 

& ( 5 ) = - ( 1 - ~ ) ' / ( 1 - ~ 2 / 2 )  &(7)=p2/(1 - ~ 2 / 2 )  (12) 

Ac(6) = (p4-(1  -p)")/P(6). 
The Aboav-Weaire law is only exact (equations (2) and ( 1 1 ) )  for p =f with a = 1.5. 
The best least-square fits of the theoretical nm(n)  to the n m ( n )  values calculated from 
equation (2) gives a [ n m ( n ) ]  = 1.5 for all p (D Fraser, personal communication), while 
a weighted fit of n m ( n )  with weights P(n) also gives a, = 1.5 (appendix A.3, equations 
(AS) and (A.6)). However, if m ( n )  deviates from the Aboav-Weaire relation, sig- 
nificantly different values of ' a '  may be obtained from different fits to the data (11). 

For the ferromagnetic Ising model, the quartet correlation function is equal to a 
Pfaffian of the pair correlation functions (Groeneveld et a1 1978): x,,=2x:-x:. The 
pair correlations xI and x2 have been determined exactly at all temperatures TIT,  (see 
for example Khatun et ol 1990 and references therein). The P(n) distribution can 
therefore be calculated from equation (8) as a function of TIT, .  The numerical results 
will be described in section 4 and have been used to check the validity of the computer 
simulations. 
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3. Numerical simulation methods 

Equilibrium configurations {&I = +: have been generated on a N x N square lattice, 
with helical boundary conditions, as a function of T /  T, using Monte Carlo simulations. 
The spin updating is performed sequentially according to the Glauber dynamics, going 
through the lattice in a regular fashion (Stauffer et al 1988). A probability ] / ( I +  
exp(AE/kT)) is used for Ripping a spin S h ,  where AE is the energy change associated 
with the flip of Sh into -Sk. The numerical simulations are performed on a HF9000/340 
workstation for N=700 and 0.6s T / T c s 0 . 9 2  and 1.05s T / T , s  10000. The vicinity 
of the Curie point has not been investigated as critical slowing down requires too long 
simulation times to reach equilibrium. For T/ T, = 1.05, configurations close to equi- 
librium but not truly at equilibrium have been obtained. In general, averages (tables 
1 and 2) have been performed on 200 configurations once equilibrium is reached. 

At high temperatures ( T / T , S  1.179), we have moreover used a microcanonical 
Ising model simulation with a Q2R cellular automaton: a spin is flipped if and only 
if it has as many up as down neighbours (Vichniac 1984, Herrmann 1986, Stauffer 
1991). For a given T / T , ,  the average energy per spin (E) is proportional to the pair 
correlation x,. This average energy is simply calculated for an initial random distribu- 
tion of spins on the lattice with a fraction p ( s + )  of up spins ( ( E ) n p ( s + ) ( l - p ( s + ) ) ,  

Table 1. Comparison between a theoretical (equations (8) and l i n g  correlation functions) 
P(n) distribution at T/T,=2.8616, two distributions simulated for p(r+)=0.700 (QZR, 
200 configurations of 65 536 cells), T/T,=2.8616 (king, 200 configurations of 490000 
cells) respectively and one calculated for a random distribution of spins (equations (8) to 
( IO) ,  p = 0.75) which gives the best least-squares fit to the theoretical P ( n ) .  

4 0.031 62 0.0316 0.0316 0.035 16 
5 0.237 75 0.2378 0.2379 0.234 37 
6 0.461 26 0.4613 0.4609 0.460 94 
7 0.237 75 0.2377 0.2377 0.234 37 
8 0.031 62 0.0316 0.0318 0.035 16 

Table 2. Comparison between m ( n )  correlations simulated for p(s+)=0.700 (Q2R), for 
T/ Tc= 2.8616 (Ising) and calculated for a random distribution of spina with p = 0.75 (see 
legend of table 1). The best least-squares fit to equation (2) yields: a [ n m ( n ) ]  = 1.348, 1.349 
.,U" 1.2 ,U, L l l C  VL.\. l"l."""8"CL1C .""lb Llll" I',LII""III L S D C I  'SJpSLU"C1y. 11 sqY"L1"" ,', 
is valid, m(6)=6+g2/6=6.12406 is expected whatever $0'. 

^ _ A  I i __.L^ n l D  r-:.." "..A A-... ^^^^^ --.---. :~,",.. , C ^ ^  :-- ,*> 

m ( n )  Q2R m ( " )  king m ( n )  random 
" (*lo-') ( + 1 OP ) p = 0.75 

4 6.868 6.869 7 
5 6.416 6.417 6.46 
6 6.119 6.119 6.110 I7 
7 5.912 5.912 5.9 
8 5.760 5.760 5.75 
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see for example Glotzer er al 1990). Equating both expressions yields 

p ( s + )  = 0.5 * 0 . 5 ( ~ , ) ~ ' ~ .  (13) 

Using equation (13) (for instance with the + sign), we deduce the total number of up  
spins p ( s + ) N 2  which are initially randomly distributed on the sites of the N x N 
square ( p ( s + )  =0.85 for T/T,= 1.179). The spin updating is performed with a multi- 
spin-coding program (Herrmann 1986) on a Macintosh SEI30 microcomputer for 
N=256. In all cases, uniform random numbers are provided by a new portable 
pseudo-random number generator, with a period of -2IM (Marsaglia et a/ 1990). 

4. Simulation results 

Whatever T/ T,, the simulated P( n) distributions are in very good agreement with the 
theoretical P( n )  calculated from equations (8) and from the numerical values of x,, 
x2 and x , ~  (figure 2(n)) as shown, for instance, by table 1 for T/T,=2.8616. We have 
observed that the theoretical P ( n )  distributions can be accurately approximated by 
equations (8) to (lo), that is by P ( n )  distributions which result from a distribution of 
independent spins on the lattice, with a probability p shown on figure 2 ( b )  as a function 
of T,/ T. As discussed by Khatun et al (1990), there is a vertical inflection point as a 
weak singularity of energy type E log E where E = IT - T,I/ T, for all correlations, in 
particular for x,, x2, xI2, at the critical temperature. This type of singularity therefore 
exists for P ( n )  (equations (8)). 

Figure 2. (a) P(n) distributions as a function of  JJ J for a ferromagnetic lsing model on 
a square lattice for n = 4, 8 (lower curve), n = 5, 1 (intermediate curve) and n = 6 (upper 
curve); ( b )  probability p ( J J 7 )  which gives the best least-squares fit of the theoretical 
P(n) to P(n) calculated with the help of equations (8)  to (IO). 

Figure 3 shows the two-cell correlations M,(n) ,  average numbers of k-sided neigh- 
bours of an n-cell, at various temperatures. The M,(n)  do not all vary linearly with 
n even at infinite temperature at which the Aboav-Weaire law is exact with a = 1.5 
(Le Caer 1991a). Comparisons with M k ( n )  correlations observed in natural and in 
simulated tissues are presented in section 5. At T = m ,  the M d n )  are (appendix A.l 
and A.3) 

Mk( n )  = P ( k ) [ n  + k-6- LS(n -6)(k -6)+$(n - 5 ) ( n  - 7 ) ( k -  S ) ( k -  711. (14) 
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Figure 3. Correlations M,(n) lor ferromagnetic king cellular wuctures at various reduced 
temperatures 1 = TIT,  (full circles 1 = 0.918, open squares 1 = 1.16, crosses 1 = 0.712, crosses 
at 45" 1 =2.862, full squares 1 = m, interpolating bold lines have been drawn far the sake 
of clarity). 

The distribution P ( n )  for p = 0.5 is very close to  the maximum entropy distribution 
subject to the same constraints (appendix A.1 and AS). The general expressions which 
allow calculating M k ( n )  for a distribution of independent states on a square lattice 
are given in appendix A.l. 

The correlations m ( n )  provided by the Monte Carlo and the Q2R simulations are 
in good agreement at high temperatures, as shown for instance by table 2 for Tf T,= 
2.8616 which also gives the m ( n )  values calculated for a random distribution of spins 
with p =0.75 (equations (11) and (12)). Two cellular structures associated respectively 
with an independent distribution of spins and with a ferromagnetic Ising model, which 
show almost identical side distributions P ( n ) ,  differ in the intercell correlations and 
in a [ n m ( n ) ]  (figure 4). The differences between the latter correlations, which are 
generally rather small, pass through an extremum around or at T, for n = 4, 5, 7, 8. 
The correlations m ( 6 )  are very close for the two structures (figure 4). Figure 4 suggests 
the existence of weak singularities for m ( 6 )  and m ( 7 )  at the critical point while extrema 
are observed for the other m ( n ) .  The correlations M,(n) show much larger relative 
variations than m ( n )  (figures 3 and 4), both being related by equation (1). 
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Figure 4. Correlations m ( n )  and best least-squares value of a [ n m ( n ) l  (equation (2)) as a 
function of TJT (horizontal lines: m ( n )  values calculated from equations (11) and (12) 
for p=O or 1,  full circles: ferromagnetic king model, open circles: random distribution 
of a fraction p i T , l T )  of up spins as given in figure 2 ( b ) ;  bold lines are guider for the 
eyes). The errors are less than the point sizes. 

Figure 5. m ( 6 )  versus p2 (crosses: simulation results for the ferromagnetic king structure, 
bold line: m ( 6 ) = 6 + + , / 6 ) .  
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When the temperature goes to zero, the intercell correlations are expected to become 
identical for the two latter types of cellular structures ( p  + 0 or p + 1). The m ( n )  values 
calculated fromequations (11) and (12) f o r p = O o r  1 (m(4)=7 ,  m(5)=6.4,  m(6)=6 ,  
m(7)=9=5 .8571 ,  m(8) = 5.75) are in fact observed to be the best extrapolated values 
of the Ising m ( n )  versus fi2 plots when p2 goes to  zero. The Aboav-Weaire law predicts 
that m(6) = 6 + p 2 / 6  whatever a. Figure 5 shows that m(6) is well approximated by 
the latter relation with a maximum deviation of =0.15%. The best least-squares fit of 
n m ( n )  to n m ( n )  given by equation (2) allows us to calculate n [ n m ( n ) ]  (close to a ,  
(AS), figure 4) which decreases from 1.5 to ~ 1 . 2  at the critical point. The temperature 
dependences of m(4) and of a [ n m ( n ) ]  are strikingly similar. In fact, a plot of 'a' as 
a function of m(4) seems to indicate that these two parameters are in a one to one 
correspondence. 

5. Comparison with natural and other simulated cellular structures 

Various natural or simulated cellular structures exhibit distributions of the number of 
cell sides P ( n )  mainly with 4 < n s 8 and f i2 G 1. This is the case for various undifferenti- 
ated biological tissues (Lewis 1931, Mombach et al 1990), for cellular arrays obtained 
in directional solidification of alloys (Billia et a1 1991, Jamgotchian el a1 1991) or for 
Voronoi tessellations calculated during the course of constant pressure Monte Carlo 
simulations of ZD hard disks at various packing fractions q (Fraser et a/ 1990). The 
P ( n )  distributions observed in such natural or simulated cellular structures agree 
satisfactorily with the distributions calculated from the topological models associated 
with a distribution of independent states on a square lattice (Le Caer 1991a). The need 
to confirm that the correlations between cells are correctly represented by the topological 
models was however emphasized. The present results corroborate these statements as 
shown by tables 3 and 4 for P ( n )  distributions with different values of p2.  The 
distributions (table 3) calculated with various models, but all with p2=0.812, show 
only minor differences while they agree reasonably with the experimental distribution 

more closely when p2 decreases: when P(4)  and P(8)  are vanishingly small, p2 

Table 3. Comparison between experimental and calculated distributions of the number of 
cell rides P ( n )  with ~ , = 0 . 8 1 2 :  

0 P ( n )  for the epidermal epithelium of a 220 mm cucumber (1000 cella, Lewis 1931): 
P ( n )  for the ferromagnetic king model on a square lattice and TIT. =4.289 82; 
P ( n )  far a random distribution of States on a square lattice and p=O.716 195; 
P ( n )  deduced from the application of the maximum entropy principle with the sole 

F..- rh- -..-..-ha- I f  I.._ ~ L\ A -  ev..a,+nA + h m  --t,-..t"+aA A;m+*;h..+<n-c O ~ ~ P P  ma-- 0 - A  
,U, U,= C"C",,,"CL \,,g"'= ",. C A y L b L ' Y ,  ,.a* C L I l r U l P L C "  " I ~ L I I " " b I " I I 0  Y6'CC ..1"1G -111" 

constraints ( n ) = 6  and ~ , = 0 . 8 1 2  (P(3)- 1 . 7 4 ~  IO-', P(IO)=2.34x lo-'). 

220 mm Maximum 
" cucumber king Random entropy 

4 0.025 * 0.010 0.040 34 0.041 21 0.037 15 
5 0.2791 0.028 0.244 62 0.241 16 0.23921 
6 0.415*0.031 0.430 07 0.435 25 0.442 63 
7 0.237*0.027 0.244 62 0.241 16 0.239 16 
8 0.040* 0.012 0.040 34 0.041 21 0.037 73 
9 0.004*0.004 0 0 1 . 7 3 8 ~  IO- '  
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Table 4. Comparison between experimental and calculated distributions of the number of 
cell sides P(n) with e2= 1:  

0 P(n) far a cellular tissue in a human amnion (1000 cells, Lewis 1931); 
P(n) deduced from the application of the maximum entropy principle with the 

0 P ( n )  far a random distribution of states on a square lattice and p = O . 5  (Ising for 
constraints ( n ) = 6  and + > = I ;  

TI T, = a). 

n 3 4 5 6 7 8 9 

Human 0.004*0.004 0.054i0 .014  0.248i0.027 0.397i0.031 0.241 i0 .027  0.049*0.014 O.W7*0.005 
amnion 
Maximum 0.004 0.054 0.242 0.399 0.242 0.014 0.W5 
elltropy 
Random 0 6.25 X 10.' 0.25 0.375 0.25 6.2SX 10.' 0 
p = 0.5 

f * 
n 

3 4 5 6 7 8 9 1 0  
0,o " " ' t  

Figure 6. Distribution P(n) of the number n of  edges of cells for an epidermal epithelium 
of a 220-mm cucumber (full circles with error bars, Lewis 1931) and for the ferromagnetic 
k ing  model on a square lattice at TI J. = 4.289 82 (open triangles, table 3). 

determines P ( 5 )  and P ( 7 )  almost uniquely. Table 4 emphasizes the striking similarities 
between the P ( n )  distribution for a cellular tissue in a human amnion (Lewis 1931) 
and the maximum entropy distribution (Rivier 1985) calculated with the sole constraints 
( n )  = 6 and p2 = 1 (11). We conclude that a detailed comparison between the correlations 
among cells is absolutely necessary before assessing the relevance of a model. As the 
data which are needed in order to perform such comparisons are only available for 
the epidermal epithelium of a 220-mm cucumber (Lewis 1931) and for the 2~ hard-disk 
simulations (Fraser 1990, personal communication), the following discussion will be 
mainly restricted to these two cellular structures. 

Mombach el al (1990) have determined P ( n )  and m ( n )  as a function of n in 
various vegetable tissues. The distributions P( n )  calculated from a ferromagnetic king 
model cannot account for the experimental disymmetries in P ( 5 )  and P ( 8 )  (see also 
table 3) but give an overall acceptable description of such P ( n ) .  The experimental 
m ( 8 )  are slightly but systematically lower than the m ( 8 )  expected from the Aboav- 
Weaire law with a = 1 (figure 4 of Mombach er al 1990). Deviations also exist for m ( 7 )  
in the cases of onion and of aloe and for m(4) in the case of Anthurium. A better 
knowledge of experimental uncertainties would be necessary before concluding to the 
strict validity of the Aboav-Weaire law. 
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In order to compare in detail the two cellular structures '220-mm cucumber' and 
'ferromagnetic Ising', we have simply determined the only free parameter of the model, 
that is the temperature T/T,, from the experimental value of p2 for the cucumber 
tissue, fi2 = 0.812 (Lewis 1931, table 3, T /  T, = 4.289 82). For the ' 2 ~  hard disk' tissue, 
we have used the results of a simulation performed for the packing fraction 1) = 0.492 
which yields P(n)  (P(4)=0.014, P(5) =0.250, P(6)=0.49, P(7)=0.216, P(8)=0.028, 
P(9) =0.002,81600 cells, Fraser 1990, personal communication), in reasonable agree- 
ment with the experimental ones (table 3). We have calculated the correlations M k ( n )  
( 4 s  k s 8 )  for the three previous cellular structures. Besides equation ( l ) ,  the M k ( n )  
must also obey the following relations (Peshkin et a1 1991): 

Summing up equation (15) over n and using (14) yields 

1 P ( n ) M k ( n )  = P ( k )  1 M.(k) = kP(k). 

The topological correlation functions A,, defined as 

(17) 
n 

A,. = M . , ( n ) / P j k )  = M-"(k) jP(n  j =  A,, ( i s )  
allow comparing topological properties of tissues which show different distributions 
P( n )  of the number of edges of cells. The symmetry is a consequence of relation (16) 
while relations (15) and (1) become 

(&)=E P(k)A,. = n (Uk,)= nm(n) .  (19) 

If Pkn is the probability that a cell with k sides and a cell with n sides are neighbours, 
the correlation A,. is 

A,. =6Pkn/(P(k)P(n)). (20) 

Fradkov er al (1987) have defined the topological gas as an ideal arrangement of cells 
free of correlations with 

P,. = knP(k)P(n)/36 A,, = kn/6 (21) 

m ( n )  = 6 + p 2 / 6  (22) 

that is (Fradkov et al 1987, relation (19)): 

and a = -fi2/6 (equation (2)). If the A,, are linear in k and in n, they are uniquely 
expressed as (appendix A.2) 

(23) 
where a is the parameter of the Aboav-Weaire law (equation (2)). 

Relation (23) does not imply that the associated distribution P(n) maximizes the 
entropy, S = -X P( n )  log( P( n)), subject to the two remaining independent constraints: 

P,,,(n) =0.75'"-'"/4 ( n 3 3 )  which has very unusual features such as a mode at n = 3  
and a large p2 = 12. Besides the constraints defined by equations (19) (see also appendix 
A.4), the topological correlation functions A,, must fulfil the unavoidable condition 

A,. 3 0. (24) 

A,. = n + k -6 -  ( a / p 2 ) ( n  -6)(k -6) 

/ * \  - v  ~i_ . \ -  1 - - A , - \ - <  -"*~~-"-~-..-~-+."-.,~~"-l.,.~~~h~~~~-,h~~~=+.~h..*~-" \,/ - A  1 ,,', - I a,," \", - U, '23 L11G IllClAllllU11, S , L L . " I , J  1 1  ".l.J . . ' L I B I C Y  I". L1.C " . I L . . " Y L L " I I  
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Extra constraints exist for tessellations with convex polygons such as Voronoi or 
Laguerre (Telley 1989) tessellations: 

A,, = 0 ( 2 5 )  
as two triangular cells cannot share a side without creating at least one neighbouring 
concave cell. By construction, the topological models described in I1 also have 

A13 = 0 A3,=O(ifallr ,a4).  (26) 
The latter constraints may be too stringent for some natural structures but constitute 
in many cases reasonable approximations (e.g. polycrystal cuts) as the energetic cost 
of A,, # 0 may be locally too high. 

Using a maximum-entropy argument, Peshkin et a1 (1991) have predicted that 
Mk(fl) is linear in n (only the two constraints ( 1 ) =  1 and ( n ) = 6  are independent): 

(27) 

(28) 

(29) 
However equations (27) to (29) do not guarantee that M h ( n )  P 0 for all allowed values 
of k and n ( n ,  s n, k s  n 2 ) .  For instance, if P(3) # 0, M3(3) = -9P(3)a/p2 will be 
positive only for a < 0 while a is positive and of the order of 1 in most natural cellular 
structures. For a>O and n , = 3 ,  M , ( n )  cannot be linear in the whole range [ n , ,  n23 
and must show an upwards curvature for small values of n. If we consider n (or k )  
as a continuous variable (not restricted to be >O), we observe that the point n (or 
k ) = 6 + p 2 / a ,  Ah.=6+p2/a belongs to all thelinesA,.=g,(n) (or=g.(k)). If n , = 3  
and if n2 is infinite, it is therefore only for - f s a / p , s O  that M,(n)  will satisfy the 
positivity constraint (relation (24)) whatever k and n. For a>O and k large, M , ( n )  
may also become negative for n > 6  and again M h ( n )  will curve in order to fulfil the 
positivity constraint. Such distortions are also expected to propagate to other Mk( n )  
correlations and may produce departures from the Aboav-Weaire law particularly for 
n = 3 .  

Exacf calculations of the correlation functions A," have been performed in various 
topological models for n, = 3  and n2 up to 46 (DIES). A surprising overall quantitative 
agreement is observed to hold between the Aha for z = 5 and the experimental A,. of 
cuts of alumina polycrystals (Le Caer and Delannay 1992). Moreover, the correlation 
functions for n 2 P  14 (for instance, topological models associated with 8-8-4, 3-12-12 
Laves tilings, 11, Griinbaum and Shephard 1987) clearly show the curvatures and 

becomes visible at small n, especially for large k, in a case with a = 0.49. The simulation 
results of figure 2 of Peshkin ef a1 (1991), which corresponds to k G 18 and a = -0.03, 
as well as their simulations with a < O  ( a  = -1.33, -0.96) do not suffer much from the 
previous difficulties and have Mk( n) 3 0  with only negligible departures from linearity. 
However, the corresponding P ( n )  distribution has an unusually large p2 (=12.69) for 
a = -1.33 which is in fact not so different from p2= 12 which is calculated for the 
maximum entropy distribution P,,,(n). 

As P ( k ) ,  a [ n m ( n ) ]  (=1.23) and p2 (=0.812) are known for the cucumber tissue, 
equation (23) can be used to calculate AI,  (figure 7). Care has been (and must generally 
be) taken in the determination of experimental Akn for small values of P ( k )  in order 

M k ( f l )  = c, + Ehn. 

Ck = P ( k ) ( k  - 6){ 1 + 6 a / p J  

D, = P(k){l  - ( k  -6 )a /p , } .  

Using equations (18) and (23), we derive 

^ _ ^ ^  c -----... :..--A "-"I.,-:- * . " ! ( , " " , \ ^ I  "--~---.I."*~"..~"*"-+~",~ .._," ..._ ~ 
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Figure 7. Correlations A,,, and n m ( n )  (all A,. have been represented far the sake of 
clarity, in spite of the symmetry A,. = A n k ) :  ( a )  for an epidermal epithelium of a 220-mm 
cucumber (full circles with error bars, calculated from data of Lewis 1931); ( b )  for a 
ferromagnetic king cellular structure at TITc=4.2898 (crosses and associated bold line, 
errors less than the cross size); ( c )  for a cellular structure associated with a distribution 
of independent states on a square lattice (open squares, p=0.716 795, w2=0.812, exact 
values from relations (A.2)); ( d )  far the Voronoi tessellation calculated from a simulation 
of a hard-disk fluid at a packing fraction 7 = 0.492 (open triangles, errors about I O  times 
less than the corresponding errors for the A,. of the cucumber, Frarer 1990, personal 
communication); (e) linear correlations (maximum entropy) calculated from equation (23) 
with a = 1.23 and ~ ~ = 0 . 8 1 2  (straight lines). 

to avoid calculating non-significant values which would be obtained by dividing M , ( n )  
by a P ( k )  determined from a too small number of cells. An overall trend towards a 
decrease of A*. with R is observed for k 2 I for all structures on figure 7, as also 
expected from equation (23). For the epidermal epithelium of the cucumber, the 
experimental Akm have been derived from the numerical values given in table 4 of 
Lewis (1931). There is a striking qualitative agreement, and even quantitative agreement 
for almost all n values, between the two-cell correlations determined for the three 
structures and for the maximum entropy model. Although the ferromagnetic king 
structure is an oversimplified model of such natural structures, as it constrains the 
p ( n )  distributions to be symmetric and as it forbids cells with three sides or with nine 
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sides or more, it seems to share some general topological characteristics with the 
previous tissues. 

We are clearly unable to decide if the experimental Aha are Curved as are the 
correlation functions of the king and hard-disk structures or if they are essentially 
linear as predicted by the maximum entropy model. In any case, the latter model 
cannot be exact for A,. as it predicts negative values of A, when a/w,>0.5 (here 
a/p2-l .51,  A,, (maximum entropy)--4, figure 7) and distortions must take place. 
Moreover, the linearity of A,. in k and in n does not imply that the entropy is maximum 
if P ( n )  differs from P,(n) calculated in the way discussed after equation (23) with 
eventual extra conditions about the allowed range of n: n ,  s n 6 n 2 ,  or including prior 
probabilities. 

More important is the fact that the A,, seem to be the relevant correlation functions 
to be considered as the M h ( n )  show larger relative differences than the A,, which are 
mainly due to differences in the P ( k )  factors. Structures with not too different P ( n ) ,  
n ,  S n S n 2 ,  a and p2 topological characteristics share similar correlations A,. although 
they belong to very different fields. The latter conclusion is confirmed for larger values 
of p2 and for n , = 3 ,  n2>12 (up to 46, LeCaer and Delannay 1992). This may be 
consistent with a trend towards the constrained maximization of entropy with, in 
general, deviations of A*. from the linear behaviour. The correlation functions exhibit 
a regular behaviour (figure 7): A.,,, is curved upwards at least for the Ising and hard-disk 
structures. The overall curvature decreases when k increases and A,. is almost linear 
in n while A6" is curved downwards. As will be shown in a forthcoming publication 
for n ,  = 3 and n2 12 (Delannay and Le Caer 19921, the surface obtained when plotting 
A,. as a function of k and n is very smooth and changes progressively when k (or n) 
increases. 

Further theoretical work which takes into account the positivity constraint in the 
frame of the maximum entropy method is necessary in order to take full profit of the 
heuristic power of the latter method. This would help us to know if the evolution of 
some structures towards a maximum entropy state is hindered or if some constraints 
have not yet been identified. Finally, more precise experiments are needed for biological 
tissues and more generally for structures with p 2 6  1. 

6. Conclusions 

The topological properties of cellular structures associated with a ferromagnetic king 
model on a square lattice have been characterized as a function of temperature. The 

parameter of the Aboav-Weaire law decreases by -20% and reaches its minimum at 
the critical temperature which would be worth investigating in detail using cluster 
algorithms. The correlations Mk(  n) are more sensitive to temperature variations but 
the A," differ little from the A,, calculated for random distributions of spins (relations 
(A.2) with p (  T J T )  given by figure 2(b)). We observe that qualitative and overall fair 
quantitative agreements hold between the Ak. of the ferromagnetic king model, the 
AI, of an epidermal epithelium of a cucumber (Lewis 1931) and the A,. of a Voronoi 
tessellation generated from a ZD hard-disk fluid for a packing fraction T )  = 0.492 (Fraser 
et al 1990). More precise experimental characterizations of topological properties of 
natural ZD cellular structures, including in particular A,, for small and large values 
of n, are desirable in order to ascertain the validity of theoretical models. Unfortunately, 

pelo+:.,a .,O.:~+:A..- nf ...Is1 A- thn whnln rothor = m o l l  / r l  LO/-\ .vhtla +ha n r r . r / r > l  
L C I a L I I c  " a L L L L I I " I I I  Y I  ,,'\'., L L L C  "U L l l L  I I I I " L *  . O I . L * .  I...Y.. \'.'."'"I "a...., L 1 . l  YL'.".\'.,, 

-- *LI- :" - - -" - -&I_ .  "Cl.. a- ---.a:-. !--eh D f . . >  o n A  A h m f n - a h o n A  
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Appendix A 

We define A,. as (equation ( 1 8 ) )  

Ax. = M k ( n ) / P ( k )  =A., (A.1) 

A.1. For a distribution of independent states on a square lattice with a fraction p 
(or 1 - p )  of u p  spins, the A,. are calculated exactly as a function of p2=4p(l - p ) :  
defining GS = 2 - fi2 and G6 = 1 - p2 + 0.375~: 

A, = A,, = 0 A M = I L ~ / G ~  A47 = 8 / @ 2  A s =  16/pz 

ASS = ( ~ ~ - ~ C L J / { ~ G : I  &= (48 -Up2+  11p~)/(8GsG6) 

As7= (32- ~ ~ P - I L : ) I ( ~ P L ~ G : )  As,= (16-6/12)/(~2Gs) (A.2) 
A66 = (192 -304p2+ 168p:-27p;)/(32Gi) 

A67 = (64-56p2+ 13p:)/(8GsG6) Am= (4+Pd/(2G6) 
A - 8 '  = (16+4p1 -7pf)/(2pzGj) A,,= ( 8 - 2 p l ) i ( p 2 G s )  88- 1 1 1 2  

The rank of the ( 7 x 5 )  matrix A deduced from the constraints on P ( k )  (Peshkin et ai 
1991, equation 16) ,  whose elements are: A ( l , j ) = l ,  A(2,j)=j,  A(i,j)=Ai+,,j ( i =  
3, .  . . ,7 ,  j =4,.  . . ,8) is equal to 3 whatever p 2  (#O). The A,. given by (A.2) differ 
little (figure 7 )  from the Akn of ferromagnetic king cellular structures, with p (  TJ T) 
given by figure 2(b) .  

A.2. Let us assume that M,(n)  is linear in n (relation (27)). Peshkin er a1 (1991) 
have deduced that C 6 = 0  and that D k / P ( k ) =  Fk is linear in k Relation (27) yields 
(Ek = G / P ( k ) )  

A,, = E* + n F k .  

As Aka = Ank, Akn is linear both in n and in k. Using particular values of n, it is readily 
shown that E, and Fk are linear in k. Therefore 

(A.3) 
From the condition (Ank)  = k, we deduce that k = E, + 6F, = A,, whatever k and 
consequently that 6a + p = 1 and 60 + 6 = 0: p and 6 are therefore expressed as a 
function of the sole parameter Q. Using the second condition (19), (kAk.)= n m ( n ) ,  
we obtain 

A,, = akn + P ( n  + k )  + 6. 

nm(n)  = n(6+ap2)+p2(l-6a)  

which is the Aboav-Weaire law (equation ( 2 ) )  with a = -a /p2 .  Finally, A,. is uniquely 
given by the linear form (relation (23)) 

Aka = n +  k -6 - (a /p2 )  ( n  -6)(k -6j.  
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A.3. More generally, i f f h e  A*. are polynomials of degree L in k and in n, they are 
conveniently expressed as a function of L(L+ 1 ) / 2  coefficients 

L i  

Ak.=n+k-6+ 1 Cg[k,nj+kp;]  (A.4) 
;=I j = ,  

with 

X; = ( X  -6) ’ -  pj  p ; = x  P ( k ) ( k - 6 ) ’  po= 1, p, =o .  
k 

It is readily verified that the A,. given by equation (A.4) satisfy the required constraints 
(conditions (19)) :  

Ax. = A.x 

as 

and as ( ni) = 0, we calculate 

( n m ( n ) ) = I  P ( n ) n m ( n )  =p2+36  

as expected from the Weaire sum rule (Weaire 1974). When the Aboav-Weaire law 
does not hold, that is when n m ( n )  is not linear in n, it is easy and convenient to 
calculate a slope 6-  a, (equation ( 2 ) )  from a weighted least-squares fit of nm(n)  with 
weights W. = P ( n ) :  

aw = (.216+ 1 2 p 2 - ( n 2 m ( n ) ) ) / p 2 .  (A.9 

If the A*. are polynomials (equation (A.4)), the application of relation (AS) yields 

with r, = pLi /p2.  
For p = 0.5 (DIES), the Ax. are given by equation (A.4) with C , ,  = -0.75, C,, = O  

and C2, =$ (equation (14)). As p2=  1, the factors ( x - 6 ) ’ - p 2 =  ( x - ~ ) ( x - ~ ) ( x  = k, n )  
explain why the AS, and A,,, correlations are linear in n. As P ( n )  is symmetric, p3 = 0 
and only Cll enters in relation (A.6) to give a, = -2C,, = i.5. The poiynomiai form 
given by equation (A.4) may more generally provide a useful approximation for some 
actual correlation functions (Delannay and Le Caer 1992). 

A.4. The following relations, which are consequences of (Akn) = n, are valid what- 
ever A k n  (((&)) = 6) :  

((kjAxn))= Pj+i (A.7) 
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where (( . . . )) means average over k and n (the Weaire sum rule is obtained when one 
averages first over k for j = 1).  Writing A*. as 

(A.8) A*. = n + k - 6 +  F ( k ,  n )  

with F(k n )  = F(n,  k )  and averaging over k or over n, we deduce 

( F ( S  n ) ) = O .  (A.9) 

Averaging kjF(k, n )  over k yields a function of n 

G j ( n ) = ( k j F ( k  n)) 

which must satisfy 

(A.lO) 

( G j ( n ) ) = O  whateverj (A.ll) 

while (equation (A.5)) 

aw = -((knF(k, n)) ) /p2 .  

Relations (A.9) to (A.ll) are verified if an only if (Delannay and Le Caer 1992) 

F ( k ,  n) =I C , [ f ; ( k ) f ; ( " ) + f ; ( n ) f ; ( k ) l  (A.12) 
8.j 

with ( f m ( k ) ) = O  (for instance: f m ( k )  = u m ( k ) - ( u m ( k ) ) ) .  
AS. The distribution PME(i) ( 4 S i S 8 )  which maximizes the entropy S= 

-2 P(i) log(P(i)) subject to the constraints given by the previous matrix A (for p2= 1, 
appendix A.l )  is also symmetric and has the same m ( n )  correlations as the DIES 
distribution: 

PME(4) = PME(8) = 1/(8 + 2  x 6O.'') =0.063 83 

PME(5) = P M E ( ~ )  = 3 / ( 6 + 4 ~ 6 ' . ~ ~ )  ~ 0 . 2 4 4  69 

PME(6)= 1/(4/3+2/6°-25)=0332296. 

As the rank of A is 3 and as the A*,, are polynomials of degree 2, PME(i) maximizes 
the entropy subject to the constraints 

P(i )  = 1 ( n ) = 6  and p2= 1. 

The entropy calculated for a distribution of independent and equiprobable states 

SDI,,- 1.407 532 

for 

PDIEs(4) = PDIES(S) = 0.0625 

P ~ E s ( S )  = P D I E S ( ~ ) = ~ . ~ ~  

PDIES(6) = 0.375 

is different from (although very close to) the maximum entropy SME- 1,407 757. 
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